热处理应力及其影响分析
  发布时间:2022年10月27日 点击数:

  热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状、尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义,例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。

  01、钢的热处理应力

  工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度、材料成分和热处理工艺等因素的影响,当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。

  实践证明,任何工件在热处理过程中,只要有相变,热应力和组织应力都会发生。只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。

  02、热处理应力对淬火裂纹的影响

  存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内尤其是在最大拉应力下)才会表现出来,若在压应力场内并无促裂作用。

  淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的,其效果将随高温冷却速度的加快而增大。而且,在能淬透的情况下,截面尺寸越大的工件,虽然实际冷却速度更缓,开裂的危险性却反而愈大。

  03、总结

  1.热处理过程中产生的应力是不可避免的,而且往往是有害的。但我们可以控制热处理工艺尽量使应力分布合理,就可将其有害程度降低到最低限度,甚至变有害为有利。

  2.当热应力占主导地位时应力分布为心部受拉表面受压,当组织应力占主导地时应力分布为心部受压表面受拉。

  3.在高淬透性钢件中易形成纵裂,在非淬透性工件中往往形成弧裂,在大型非淬透工件中容易形成横断和纵劈。

  4.渗碳使表层马氏体开始转变温度(Ms)点下降,可导致淬火时马氏体转变顺序颠倒,心部首先发生马氏体转变而后才波及到表面,可获得表层残余压应力而提高抗疲劳强度。

  5.渗碳后进行等温淬火可保证心部马氏体转变充分进行以后,表层组织转变才进行,使工件获得比直接淬火更大的表层残余压应力,可进一步提高渗碳件的疲劳强度。

  6.复合表面强化工艺可使表层残余压应力分布更合理,可明显提高工件的疲劳强度。

                                                                                                                     文章摘自:热处理小讲堂